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Ailltrad-Tbis paper descn1les a doubly asymptotic (DA), boUDdary-e1emcnt (BE) treatment of dynamic
soil-structure interaction where the surroundilll medium is treated as tinear-elastic. The interaction is
reduced to a surface relationship that is asymptotically exact at both hiJh and low frequencies. Governilll
equations are developed in matrix form for application to complex structures. Numerical results are
presented for a two-dimensional problem for which analytical solutions have appeared in the literature.
Good qreement between the DAiBE and analytical results is observed.

INTRODUCTION
The treatment of soil-structure interaction is of considerable importance in analyses of the
integrity of structures in ground-shock environments. There are currently three basic ap
proaches to the linear treatment of this problem: analytical, lumped-element and finite-element.
Analytical approaches are restricted to very simple geometries; hence, the results are useful for
providing insight into the physics of the problem, but the extension to complex geometries is
difticult. The lumped-element approach, in which the soil characteristics are represented by
discrete masses, springs and dasbpots, is economical, but the representation of actual soil
bebavior is crude. The finite-element (FE) approach can model the problem to almost any
accuracy desired, but the large number of elements required precludes efficient computation.
An approach to achieve a more versatile and more economical method for the treatment of these
problems would combine the best features of the different techniques. Such an approach is
pursued in this study: an analytical approximation of the soil-structure interaction is combined
with the modeling capabilities of the FE method, while avoiding the burden of many elements
in the soil.

This paper examines a linear boundary-element (BE) treatment of the surrounding soil that
offers considerable promise for complex soil-structure dynamic analysis. The structure is
modeled through the use of an available FE code and the soil-structure interaction is reduced to
a surface relationship through the use of a doubly asymptotic approximation (DAA)[l), which
requires the application of BE techniques [2]. The present study focuses on the two-dimensional
plane-strain response of structures surrounded by an infinite elastic medium; the extension to
more general problems is discussed. The paper first addresses the development of the method:
the matrix equation of motion for a structure embedded in an elastic medium is given, the
doubly asymptotic surface relationship is presented and the response equation for the embed
ded structure is synthesized. Then the solution procedure is discussed, and three numerical
examples are considered that illustrate the validity and accuracy of the approach.

A DA/BE approach to problems of this class possesses some distinctively attractive
features. First, the governing equations of the discrete soil-structure system are frequency
independent and are therefore suitable for transient response analysis by direct time in
tegration. This is in contrast to frequency-dependent methods[3,4] which require that the
analysis be performed in the frequency domain, thereby inhibiting extension to nonlinear
analysis. Second, the physical prop~rties of the soil-structure interaction are represented by
uniquely defined damping and stiffness coefficients; hence "tuning" of a model is not necessary
to achieve proper radiation and stiffness behavior, as it is with infinite elements[S] and other
frequency-independent methods, e.g. [6]. Third, the resulting equations of motion are the
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classical second-order equations of structural dynamics, so no special time integration scheme
is required for numerical solution, as may be required by nonreftecting boundary
formulations[7]. A good review of current methods for the computational treatment of wave
propagation in infinite domains is given by Zienkiewicz et al. [8].

GOVERNING EQUATIONS

In this section, governing equations for a finite-element (FE) model of a structure and a
boundary-element (BE) formulation of a first-order doubly asymptotic approximation (DAA)
for the soil-structure interaction are provided. These equations are then combined to form the
response equation for the embedded structure. Finally, computational procedures for the
solution of the response equation are discussed.

Structural model
The matrix FE equation of motion for a linear structure embedded in an elastic medium

through which an incident disturbance propagates is

¥ij +4,q =-([, +'s) (I)

where ¥, and 4, are the mass and stiffness matrices for the structure, q is the structural
displacement vector, I, and Is are surface-force vectors associated with the incident and
scattered waves, respectively and a dot denotes temporal differentiation. The mass and stiffness
matrices are easily obtained from any available FE code. The applied load is considered
separable into an incident-wave force that would exist if the structure were absent (hence a
known quantity) and a scattered-wave force due to the presence of the structure. The
scattered-wave force constitutes a troublesome unknown; hence an approximation is intro
duced for its evaluation.

Doubly asymptotic approximation
A first-order DAA is introduced to evaluate the scattered-wave force fs[l]. This ap

proximation is a surface interaction approximation, replacing the infinite volume of external
medium by a surface coincident with the external surface of the structure. The approximation is
asymptotically valid at both high and low frequencies, as are the previously developed
approximations for fluid-structure interaction[9-11].

The development of a first-order DAA for linear soil-structure interaction proceeds as
follows. At high frequencies, each surface element of the discretized structure acts as an
infinite flat plate radiating plane waves into the medium. This can be visualized by considering
that, for a fixed surface-vibration pattern oscillating at high frequencies, the characteristic
propagation wave lengths in the medium are short compared with the characteristic wavelength
of the surface-vibration pattern. For nornal and tangential motions of the ith surface element,
this model yields as scattered-wave surface forces

, "gSi =pc,a,Uj (2)

where p is the mass density of the medium, aj is the surface area of the element, Cd and c. are
the propagation sounds for dilatational and shear waves in the medium, respectively and U/I and
ul are the normal and tangential scattered velocities at the surface of tbe element; see, e.g.,[6].
For an assemblage of elements, (2) lead to the matrix relation

g' =p.4C U'_s __Ift_ S (3)

wbere -1 is a diagonal element-area matrix, (;.. is a diagonal sound-speed matrix for the
medium and Ys is the computational scattered-velocity vector for the surface elements
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expressed in local coordinates. Upon a$sembly, the local coordinates in (3) are transformed to
the global coordinates for the problem as

(4)

From (3), it is clear that the external medium appears to the structure as an array of dashpots in
the high-frequency limit.

Low-frequency behavior of the medium is described by the quasi-static surface relation

(5)

in which ~'" is a surface stiffness matrix for the medium. The construction of ~'" is discussed
below. In this limit, it is clear that the external medium appears to the structure as an array of
springs.

To construct the first-order DAA, (3) and (5) are combined to obtain

(6)

where the transformlltion of (3) as gs =GTgs results from (4) and the fact that virtual work
must be independent of the coordinate system used, i.e. (8{I)TB= (811')T&,. It is easy to see the
doubly asymptotic nature :>f the surface approximation. At low frequencies, the velocity vector
is small relative to the displacement vector, so that the scattered force is essentially given by
the static stiffness relationship; at hiah frequencies, the reverse is true, so that the scattered
force is essentially given by the radiation damping relationship. In the intermediate frequency
range, the DAA is, of course, in error; the purpose of the numerical results presented herein is
to indicate the magnitude of that error. If numerical calculations demonstrate the need for an
improved approximation, one may be derived; for fluid-structure interaction, an improved DAA
has been developed that substantially outperforms the original[ll].

Response equation
For linear problems, not only is the surface-force vector separable into incident-wave and

scattered-wave components [see (1)], but the surface displacement vector II is also separable
such that ~ =III +lis [12]. Hence (1) and (6) may be combined to give the doubly asymptotic
response equation for the embedded structure

¥.4 +p12TQT~t;",qQtj +(4. +QT4",Q)q =- II +pQTQT~t;",~ +QT~",1I1 (7)

where II and Is have been transformed as II = Qq and Is = QTgS' In (7) .p is the soil-structure
transformation matrix that relates the boundary-eiemenf and finite-element degrees of freedom,
AI. and ~. are readily provided by an FE structural analysis code, QTQT~t;",QQ is easily
computed, II and III are known and K", is determined through the application of boundary
integral-equation techniques, as now described.

For nonlinear problems, perhaps the most straightforward extension of (7) for the treatment
of nonlinear soil behavior consists merely of including an "island" of non-linear medium
surrounding the embedded structure as part of that structure. Hence the soil in the immediate
vicinity of the structure is modeled by nonlinear FE techniques, while the remainina soil of
infinite extent is modeled by the linear DAIBE technique.

Medium stiffness matrix
The basic two-dimensional boundary-integral equation for the surface behavior of an elastic

medium is [13]

~ ut(P) +I TtI(P, Q)u'(Q) dL(Q) =I UtI(P, Q)t'(Q) dL(Q) (8)

where P and Q are surface points, ut and tt are surface displacements and tractions,
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respectively, Tid and Uid are Green's functions for the boundary and k =1,2 and 1= 1,2 are
the Cartesian coordinate indices. Through representation of the structure's (two-dimensional)
external surface by an array of boundary elements, (8) may be expressed in matrix notation as

(9)

(10)

in which the 2x 2 elements of ~ and 1! are given by

S~ =~ SiPkJ +t T~£;' dLj

pr =II; Urli' dLj

where SIj and SkJ are Kronecker deltas, i and j are boundary-element indices, ~f and " are
assumed BE shape-functions and LJ is the length of the jth boundary element. For the
two-dimensional plane-strain case, the kernels T~ and Ur are given by[2,13]

Tr =f1 [!pi. (SkJC.+2Tij,ATq,J) +C.(nl'TIj,J - n/Tij,A)]
Til unJ

Ur = C.(St/C2 In Tij - TII,.TIj,l) (11)

where Cit C2, C3 and C. are material constants, Til is the distance from a node point on the ith
element to the field point of integration on the jth element, nJ is the unit normal to the surface
of the jth element. nl' is the cosine of the angle between nj and the kth Cartesian direction and
a subscript following a comma represents spatial differentiation with respect to the indicated
Cartesian coordinate at point j. In the present implementation, the displacement and traction
shape-functions El' and II are assumed to be constant over the jth element, so they may be
brought out from under the integral signs in (10). The numerical techniques used to evaluate the
integrals in (10) are discussed in the appendix.

Once the matrices in (9) have been generated, it is a simple matter to obtain the medium
stiffness matrix; because F is nonsingular, it can be factored to obtain

t =P-·Su =K u._ _ .- ."'- (12)

As the preceding development is not based on variational principles, the derived stiffness
matrix may not be symmetric. For explicit time integration, this is immaterial; for implicit
integration, a nonsymmetric equation solver may be used, or 4", may be symmetrized by
various methods(14].

The brevity of the preceding BE formulation is appropriate. in view of the extensive
coverage of the subject provided in [2]. The emphasis here has been on the specific approach of
this study; it has been found to be most economical, especially the use of numerical integration
to evaluate the matrix elements defined in (10). The apparently new technique of using
boundary integral equations to define a medium stiffness matrix is valuable, in that it facilitates
the use of the form (12). This form is required for an efficient marriage of an FE structural
model and a BE soil model. There are also improved forms of the BE method available that
utilize higher order shape functions to descn'be boundary displacements and tractions, as well
as sophisticated isoparametric-element representations; these procedures are reviewed by
Cruse (15]. The simple approach used in this study is quite satisfactory for the purposes of the
present investigation. If software were to be constructed for production analysis, the in
corporation of refined BE techniques would be appropriate.

Solution procedure
The doubly asymptotic response equation for the embedded structure, P), has the form of

the standard matrix equation of structural dynamics; hence the solution of (7) may be
accomplished with well-established techniques. For the linear response problems considered
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here, the integration of (7) is performed in accordance with the trapezoidal rule[16]. The
equation solver used with the time integrator is the skyline format procedure[l7l.

An examination of (7) on a term-by-term basis is informative. The mass matrix produced by
REXBAT[18], the structural finite-element code used in this study, is diagonal; a consistent
mass matrix could be used, however, without unduly complicating the solution. The damping
matrix is highly banded in all cases and presents no computational difficulties. The stiffness
matrix, on the other hand, may be nearly full, due to the added stiffness terms [see (10)]. For
simple examples considered here, the nonbanded combined-stiffness matrix presents no
difficulty. For large systems, however, the compact-bandwidth (low-connectivity) advantage of
the structural model, which is needed for efficient solution, would be lost through the addition
of the fully populated added stiffness matrix. To overcome this problem, a staggered-solution
approach, such as the one developed for fluid-structure interaction analysis in [19], should be
considered for large systems of equations. The forcing function, i.e. the right side of (7), may
look complicated, but each term is known and the load vector is easily computed by simple
matrix-vector multiplication and vector addition.

NUMERICAL RESULTS

In this section, numerical results for the plane-strain response of an infinite, circular
cylindrical cavity and an· infinite, circular cylindrical shell are compared with corresponding
analytical solutions. Problem geometry and notation are shown in Fig. 1; in all cases, excitation
is provided by a plane dilational wave. The coincident finite-element and boundary-element
grids for the three problems considered consist of 40 elements of equal length. Tbe finite
element shell models incorporate straight beam elements with elastic moduli modified for
representation of plane-strain conditions. Note that for this geometry ~1It is symmetric.

The results are presented in nondimensional form. Length is normalized to a, time is
normalized to alCd, and stress is normalized to pci =A+2p" where A and p, are the Lame
coefficients for the medium.

Incident wave
A plane dilatational step-wave, characterized by a compressive pressure Po and moving in

Infinite .Iastic medium
(p,c#, C.,II)

IncId.nt
WCIV,,~

Fig. I. Geometry and notation for the check problems.
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the xl-direction, can be described in terms of a nondimensional scalar potential tPl as

tPl =- ~ PO<1' - XI -1)2H(1' - xI-I) (13)

where l' is nondimensional time, XI is nondimensional position along the XI axis and H is the
Heaviside operator. For this incident wave, the shear potential is zero[l2].

The incident-wave force vector I" which appears on the right side of (7), is obtained as
follows. First, the elements of the incident-wave computational stress vector in global (XI> X2)

coordinates are determined by application of classical continuum formulas to (13)[12]; this
yields

uti =- (A +2p.6uc)PoH(l' - Xli -1)

1'~ =0 (14)

where Xli denotes the xI-position of the ith surface mode. Second, a global stress vector is
constructed from these elements, which is then transformed, on· the basis on Mohr's circle,
into local coordinates as vi =].,f1lJ. Finally, the force vector in local coordinates is determined
as [i =- -1vi, which is then transformed into global coordinates; all the yields

(15)

The incident-wave displacement and velocity vectors III and ~" which also appear on the
right side of (7), are Obtained from the classical relation Uk =at/JIaXk' This relation and (13) yield
as the elements of these vectors

U~i= 6IkPO(1'-xl/-I)H(1'-xli-l)

U~i =6IkPoH(1' -Xli -1). (16)

Circular cavity
The cavity problem is formulated simply by taking ].,f, = 4, = 0, which reduces (7) to a

first-order equation. A comparison between results obtained by the present method and
analytical results presented in [20] is provided, for step-wave excitation, in Fig. 2. Minor
discrepancies exist between the DA/BE and analytical response histories at early times. At late
times, both sets of response histories approach the appropriate asymptotes [1 ,21]; these
asymptotes are l' - 4, l' -1 and l' +2 for 8=00,900 and 180°, respectively.

Concrete shell in slow granite
The second check problem, the response of a concrete shell to an incident wave of

rectangular stress profile, is also taken from [20]. The nondimensional parameters for this
problem are h/a = 0.01, pJp = 0.865, CJCd =0.63, Co/Cd = 1.87, JI = 0.25 and 110 = 0.2; the dura
tion of the incident rectangular pulse is 10. DA/BE and analytical displacement histories for this
probl~m are compared in Fig. 3. In this figure, as in Fig. 2, the DA/BE responses generally tend
to lag· behind their analytical counterparts. As discussed in [1], this tendency is the result of
excess radiation damping introduced by the DAA. Also of interest is the DA/BE prediction of
shell response at 0= 00 before l' =1.53, which is the earliest time a disturbance can reach that
point[22]; this nonphysical result illustrates that, strictly speaking, the DAA is not a wave
propagation approximation. Despite its deficiencies, however, the DAA produces results that
nowhere differ from their analytical counterparts by more than 10% of the peak response and
also approach the proper late-time asymptote. The latter characteristic attests to the correctness
of the Km-calculation.

Alth~ugh the DAA tends to overestimate radiation damping, its inclusion is absolutely
necessary for an accurate treatment of abrupt soil-structure interaction. This is indicated in Fig.
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Fig. 4. Displacement response of the concrete shell in slow granite computed with c;;. = Q.

4, where displacement responses corresponding to the DA/BE responses of Fig. 3 have been
computed from (7) with em set equal to O. As one would expect, the highly oscillatory response
thus calculated produces extremely poor stress/strain results.

Concrete shell in granite
The final check problem, the response of a concrete shell to an incident step-wave, is taken

from [l]. The appropriate nondimensional parameters here are hla =0.5, pJp =1.0, e./ed =
l/v'3, colCd =1/v'2 and v=vo =0.25. Velocity response histories at 6=00 and 1800 are shown
in Fig. 5, corresponding to DA/BE, DA/analytical and exact/analytical treatments of the
structure-medium interaction. Although it is difficult to see in Fig. 5, the peak velocity for
DA/BE (1800) is 2.02 and for DA/analytical (1800) is 2.09; thus it is seen that the DA/BE and
DA/analytical results are in almost perfect agreement, which is most reassuring. Premature
initial response at points in the shadow region and excessive radiation camping characterize the
DA results here as they did in Fig. 3. The associated error is modest, however, with all results
coalescing at late times. Stress response histories in the middle and inner fibers of the shell at
8=900 are shown in Fig. 6. Here, some minor discrepancies between the DA/BE and
DA/analytical results appear: near l' =0, the DA/BE histories exhibit a more realistic delay
before a stress response appears; near l' = 1.5, short-term reversals in stress appear in the
DA/BE histories, whereas the analytical histories are smooth; finally, at late times, the DA/BE
asymptotic stress values are slightly less than tbeir analytical counterparts. Much larger
discrepancies exist between the DA results and the exact results, especially during the period
4<: l' <: 12. Even bere, bowever, the error never exceeds 15%, wbich is generally acceptable for
engineering analysis.
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CONCLUSION

The preceding numerical results indicate that the doubly asymptotic approximation of [I]
offers considerable promise for the satisfactory treatment of dynamic soil-structure interaction,
and that the DA/BE method described above is suitable for application to engineering
structures with complex surface geometries. Extension of the DA/BE method for the treatment
of nonlinear soil behavior is most easily accomplished via the concept of a soil island with a
DA/BE surface. The extension to problems involving elastic half-spaces is currently being
studied.
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APPENDIX
This appendix discusses the numerical approach used to evaluate the integrals in (10) for determination of the matrix

elements S~ and F~.
First, the boundary is divided into 2·D boundary clements, each with a centrally located node. For a single calculation

of S~ and F~, fixed values arc assigned to i, j, k and /, and a circle is fitted to the nodal points j - I, j and j + I; this
completely determines the center and radius of the arc describing the jth clement. The ends of the jth element arc then
point j-I on the arc half-way between points j-I and j and point j+! on the arc half-way between points j and j+ I.
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Hence L; is the arc length between points j - j and j +j. and the unit normal anywhere on the element is completely
defined.

Second. the displacement and traction shape functions. (;' and Wi. are taken as unity, so the integrals in (10) involve only
the kernels (II). In this colIJICCtion, it is important to remember that r~ and U~ pertain to a fixed point (the nodal point)
on the ith element, but to a lIQri4ble point on the jth element. For j~ i, the geometric quantities in (11) are easily
determined as

rij = [(Xli - XI;'f +(X2I- X2;'f]1I2

'/iJ. = (Xt; - xli)/rij

8r;/ I 2a:. = fI; rij.l +fI; 'ijJ.
I

(17)

(18)

(19)

Simpson's rule is used to evaluate the intearats with points j -!, j and j +! as the integration points. For j =i, special
evaluation metbods are used, as descn'bed in the followilll paragraph.

With reprd to the integral of rf, it may be sbown[l3] that [see (11)]

( rii l ~'II ("tiC.+2'lUrllJ) dL. = - tr{C. +1)8tt)1., un,

L(n/'IIJ - n/,IU) dL. =0

where the first i-subscript of the doubly subscripted variable '11 refers to the fixed nodal point for the ith element and the
second l-subscript of '/I and any sinale l-subscript refers to a variable point on that element. With reprd to the intearat of
Uf" it may be shown that [see (11))

Lin '11 dL. = r/(,-bOn 1j(/-b- I) +r,(,.bOn "('4 - I)

where the subscripts (I - Dand(i+i)refer to the end pointsof the ithelement.lntegrationof thesecond term intheexpressionfor
Ur (see (I I)}isperformed bymeansofSimpson'srule,with the nodalpoint Iand theendpoints I -!and I+!asintegrationpoints.
In this exercise, the second of (17) is used directly to evaluate 'IU'IIJ at the end points, while it is used at the nodal point in
conjunction with a Richardson extrapolation[23] of the form

(20)

where 'l(l-d,t, for example, denotes the value of 'IU [obtained from the second of (17)] that pertains to the Ith nodal point
and to a fixed point located between the nodal points i-I and I at a distance f from nodal point I; here, f has been taken
as O.OS L..

Fmally, each value of F~ is scaled throuah division by Lr This scales the tractions tl so that they, in effect, become
nodal forces, producilll a stiffness matrix~ of the standard FE form.


